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Abstract. Alluvial rivers respond to external forcings such as variations in sediment supply, water supply and base level by

aggrading, incising and adjusting the rates at which they transport sediment. These processes are recorded by landforms,

such as terraces and fans, that develop along stream courses, and by stratigraphy in downstream sedimentary basins. Many

concepts we use to interpret such records are derived from models that treat alluvial rivers as single streams: for example,

the length of an alluvial river has been shown to set its response time to external forcing. However, alluvial rivers in nature5

exist within interconnected networks, complicating the application of such concepts to real systems. We therefore adapted

a model describing long-profile evolution and sediment transport by transport-limited, gravel-bed alluvial rivers to account

for network structure, and explored the response of large numbers of synthetic networks to sinusoidally varying sediment and

water supply. We show that, in some respects, networks behave similarly to single-segment models. In particular, properties that

integrate across the entire network, such as the total sediment output, are well predicted by single-segment models. We used10

this behaviour to define an empirical network response time, and show that this response time scales with network mean length,

or the mean distance from all a network’s inlets to its outlet. Nevertheless, interactions between segments do lead to complex

signal propagation within networks: amplitudes and timings of aggradation and incision vary between minor tributaries and

major trunk streams, and between upstream and downstream parts of the network, in ways that depend on that individual

network’s structure. We conclude that, while single-segment models may be useful for some applications, detailed studies of15

specific catchments require a modelling framework that accounts for their specific network structure.

1 Introduction

Alluvial river networks are fundamental features of Earth’s surface, controlling the movement of water and sediment through

the landscape. They host fluvial landforms, such as terraces and fans, and deliver sediment to downstream sedimentary basins.

The formation of such landforms, the shapes of network longitudinal profiles, and variation in sedimentary facies or deposition20

rates in stratigraphic records are commonly attributed to tectonic or environmental change (i.e. external or allogenic forcing;

Blum and Törnqvist, 2000; Strasser et al., 2006; Densmore et al., 2007; Bridgland and Westaway, 2008; Wegmann and Pazza-
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glia, 2009). A major goal for geomorphologists and stratigraphers is, in turn, to infer the timing and magnitude of past tectonic

and environmental change, from the timing and extent of terrace formations, as well as the timing and amplitude of stratigraphic

fluctuations (e.g. Allen, 2008a; Duller et al., 2010; Macklin et al., 2012; Zhang et al., 2020). Doing so accurately requires an25

understanding of how alluvial rivers respond to changes in water supply, sediment supply and base level by aggrading, incising

and adjusting their sediment-transport rates (Armitage et al., 2011; Romans et al., 2016; Tofelde et al., 2021). Here, we focus

on how this response is influenced by the arrangement of alluvial rivers in networks.

Several lines of evidence suggest that processes of aggradation, incision and sediment transport are intimately connected to

the fluvial network structures on which they occur (Benda et al., 2004). At tributary junctions, contrasts in ratios in sediment30

to water discharge in adjoining streams lead to slope breaks in longitudinal river profiles (Lauer et al., 2008). When steep

tributaries with high sediment loads meet gentler trunk streams, fans can develop (Figure 1a). Such fans can deflect or block

the main stream and trigger aggradation along it (Church, 1983; Steffen et al., 2010; Savi et al., 2016, 2020). Alternatively,

incision and lateral migration by the main stream can lead to fan abandonment (Larson et al., 2015). Terrace surfaces are often

continuous along and between adjoining streams, attesting to the coupled evolution of interconnected river segments (Figure35

1b). Pulses of sediment propagating through river networks can interact and interfere at tributary junctions, leading to ‘hotspots’

of geomorphic change and influencing patterns of sediment export (Benda and Dunne, 1997a; Czuba and Foufoula-Georgiou,

2014, 2015; Roy et al., 2022). Furthermore, recent work has highlighted how network structure varies systematically with

climatic and tectonic setting, erosional properties, and lithology (e.g. Seybold et al., 2017; Ranjbar et al., 2018; Yi et al., 2018;

Getraer and Maloof, 2021; Li et al., 2023; Goren and Shelef, 2024; Pelletier et al., 2025). These results raise the possibility40

that, if network structure influences alluvial river responses to external forcing, those responses may vary between regions with

different climates, rates and styles of tectonic activity, or lithologies (Roy et al., 2022).

To quantify relationships between external forcings and alluvial river landforms, longitudinal profiles and stratigraphic

archives, a series of conceptual studies have employed numerical models and physical experiments that approximate alluvial

river systems as single, one dimensional streams (e.g. Paola et al., 1992; van den Berg van Saparoea and Postma, 2008;45

Armitage et al., 2011; Simpson and Castelltort, 2012). These models have the advantage of being relatively straightforward to

implement and efficient to run, and, despite their simplicity, have led to some useful and influential concepts. Water discharge

is either held constant along stream (e.g. Paola et al., 1992; Simpson and Castelltort, 2012; McNab et al., 2023) or set to

increase smoothly from inlet to outlet (e.g. Armitage et al., 2011; Goldberg et al., 2021; Braun, 2022). Paola et al. (1992)

defined an equilibration time for rivers whose long profiles evolve diffusively, Teq , which scales with the square of the system50

length, and showed that the system response to external forcing depends strongly on the frequency of forcing relative to this

equilibration time. This behaviour is thought to limit what kinds of catchments can record what kinds of signals, whether in

terrace sequences or in downstream stratigraphy (Allen, 2008b). Other studies have emphasised how propagation of signals

along stream could lead to a lag between the forcing and the river’s response, with implications for the interpretation of terrace

ages and of stratigraphic time series (Hancock and Anderson, 2002; Braun, 2022; Yuan et al., 2022; McNab et al., 2023).55

Concepts derived from single-segment models can, however, be challenging to apply to real systems, either to construct

formal tests of model predictions or to facilitate quantitative interpretations of geomorphic and stratigraphic archives. Unlike
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Figure 1. Field photographs of alluvial river landforms associated with network confluences and along-stream supply of sediment. (a)

Fan development and interaction with main stream at tributary confluence, Kaindy River (tributary to Saryjaz River), eastern Kyrgyzstan.

Photograph by T. Schildgen. (b) Terraces straddling a main stream–tributary confluence in the Toro basin, near El Alfarcito, NW Argentina.

Photograph courtesy of S. Tofelde. (c) Along-stream supply of sediment by debris-covered slopes and debris fans to Vénéon river, Massif

des Écrins, France. Photograph by T. Schildgen.

the single-segment geometries these models consider, the ‘length’ of a river network is poorly defined: channel heads lie

at varying distances upstream from network outlets. Implicit in the arguments of many studies is the idea that timescales of

network evolution are controlled by main stream length (e.g. Métivier and Gaudemer, 1999; Castelltort and Van Den Driessche,60

2003), but this assumption has not been tested. Furthermore, signal propagation on a network is, conceivably, much more

complex than along a single river segment. Along-stream delivery of sediment, which occurs in natural valleys from tributaries

as well as from transport down or lateral erosion of adjacent hillslopes, has also generally not been considered (Figure 1c;

Benda and Dunne, 1997b; Benda et al., 2003; Tofelde et al., 2022).

Some modelling studies have begun partly to address the issue of alluvial network responses to external change. Savi et al.65

(2020) explored interactions between a tributary and main stream in an experimental setting, emphasising that a tributary’s
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influence extends both upstream and downstream of a confluence (see also Benda et al., 2003). Pizzuto (1992) predicted long

profiles of alluvial rivers under steady state conditions, taking into account network structure and downstream fining, but did

not consider their transient evolution. Benda and Dunne (1997a) and Czuba and Foufoula-Georgiou (2014, 2015), among

others, simulated the dynamics of sediment transport on networks, but used fixed profile slopes, limiting the application of70

their models to timescales shorter than those on which network long profiles evolve. Lauer et al. (2008) developed a model

describing the coupled response of the Fly River and its tributary the Strickland, Papua New Guinea, to base-level rise, but

their framework has not been applied more widely.

Several important questions therefore arise regarding responses of alluvial river networks to external forcing. How similarly

do networks behave compared to simplified, single-segment models? If similarly, what is an appropriate length scale with which75

to describe a network and its equilibration time? How do patterns of aggradation and incision vary throughout a network,

for example between the main stream and adjacent tributaries, or between upstream and downstream regions? How might

these patterns in turn influence the spatial distribution and timing of terrace formation and the development of downstream

stratigraphy? We address these questions using a model that describes long-profile evolution of and sediment transport by

alluvial rivers (Wickert and Schildgen, 2019). We focus on responses to cyclical environmental change (i.e. changes in sediment80

and water supply), since orbital climate cycles appear to influence many geomorphic and stratigraphic records (e.g. Strasser

et al., 2006; Bridgland and Westaway, 2008; Wegmann and Pazzaglia, 2009; Tofelde et al., 2017), though the principles we

discuss could easily be extended to variable uplift rates or base level. We start by introducing our modelling framework and

summarising some key concepts derived from analytical solutions for the simplest single-segment case in which all water

and sediment is supplied at the alluvial valley inlet (McNab et al., 2023). We then extend these concepts, using numerical85

simulations, to the single-segment case in which water and sediment are both supplied along the course of each stream segment,

and finally to the case of interconnected valley networks. To explore the range of possible behaviour, we analyse large sets of

randomly generated network configurations. Our goal is to assess the extent to which general concepts derived from simplified

models can be applied to real systems, as well as the degree of variability and complexity that can arise due to a network’s

specific geometry.90

2 Background

2.1 Modelling long profile evolution of alluvial rivers

Wickert and Schildgen (2019) developed a model describing the long profile evolution of transport-limited, gravel-bed rivers.

Their approach brings together established theory relating water flow, sediment transport and channel hydraulic geometry that

has been extensively tested in laboratory and field settings. The result is a model grounded in first principles and consisting95

only of parameters that are physically defined (i.e. that can, in principle, be measured). We envisage a self formed channel

meandering through a gravel valley with width B and length L (Figure 2). Over time, the channel sweeps from side to side,

moving sediment from the entire valley width downstream. Then, following Exner (1925), change in elevation, z, through time,
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t, is controlled by along-stream variations in bedload sediment discharge, Qs:

∂z

∂t
=− 1

B (1−λp)
∂Qs

∂x
+ U, (1)100

where x is distance down valley, λp is sediment porosity and U is a source/sink term that can account, for example, for uplift

and subsidence, along-stream sources of sediment, or bedload loss due to downstream fining (all notation is summarised in

Appendix A). Wickert and Schildgen (2019) derived an expression for Qs in terms of bankfull water discharge, Qw, and

down-valley slope:

Qs =−kQsIQw

S7/6

∂z

∂x

∣∣∣∣
∂z

∂x

∣∣∣∣
1/6

, (2)105

where I is the intermittency of bankfull discharge, S is sinuosity, and kQs
≈ 0.041 is a coefficient combining terms relating to

sediment transport and equilibrium hydraulic geometry. This expression assumes that sediment discharge depends on bed shear

stress according to the relationship of Meyer-Peter and Müller (1948), which was later updated by Wong and Parker (2006); that

gravel-bed channels adjust their widths such that the bed shear stress is maintained at a fixed ratio of the threshold for bedload

motion (Parker, 1978; Phillips and Jerolmack, 2016); and that bed roughness follows a grain-size dependent Manning–Strickler110

formulation (Parker, 1991; Clifford et al., 1992).

Combining Equations (1) and (2) gives

∂z

∂t
=

kQs
I

S7/6B (1−λp)
∂

∂x

(
Qw

∂z

∂x

∣∣∣∣
∂z

∂x

∣∣∣∣
1/6
)

+ U, (3)

a non-linear diffusion equation, in which we have assumed that kQs , I , and S do not vary along stream. Throughout this work,

we solve Equation (3) using the boundary and initial conditions:115

∂z

∂x

∣∣∣∣
x=0

=−S
(

Qs,0

kQsIQw,0

)6/7

, (4)

z(x = L,t) = 0, and (5)

z(x,t = 0) = z =−S
(

Qs,0

kQs
IQw,0

)6/7

(L−x), (6)

where L is the x (i.e., down-valley) position of the valley outlet. Equation (4) states that the slope at the valley inlet is set by

the ratio of the sediment and water supplies (denoted Qs,0 and Qw,0, respectively). Equation (5) states that the elevation at the120

valley outlet is fixed to zero. Equation (6) states that the long profile begins in equilibrium with the supplied sediment to water

ratio.

2.2 Solutions for a single-segment valley with upstream supply of water and sediment

McNab et al. (2023) explored the behaviour of Equation (3) for the simple, single-segment case in which all water and sediment

is supplied at the valley inlet. They showed that, if the system is subjected to small variations in water and sediment supply,125
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Figure 2. Schematic diagrams showing the alluvial valley cases we investigate. (a) Upstream supply case. Sediment and water are supplied

only at the valley inlet, with discharges of Qs,0 and Qw,0, respectively. Sediment is transported downstream to the outlet, where it is exported

with a discharge of Qs,L. We assume that changes in water supply affect the entire valley instantaneously, so that the water discharge at the

outlet equals that at the inlet, Qw,0. Also shown are the valley length, L, valley width, B, and channel sinuosity, S. (b) Along-stream supply

case. Here, in addition to sediment and water supplied to the inlet, sediment and water are added to the valley continuously along stream.

Responsible processes could include: sediment supply from low order gullies and debris chutes, creep and mass wasting on hillslopes, or

lateral erosion by the channel; water supply from low order gullies and rills, surface runoff, or groundwater. Since water accumulates along

stream, water discharge at the outlet, Qw,L now diverges from that at the inlet.

such that

Qw(x,t) = Qw + δQw(t), and (7)

Qs,0(t) = Qs,0 + δQs,0(t), (8)
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then variation in elevation can be approximated by

∂ δz

∂t
≈ κ

∂2δz

∂x2
, (9)130

where

κ =
7
6

kQs
IQw

B(1−λp)

∣∣∣∣
∂z

∂x

∣∣∣∣
1/6

. (10)

In Equations (7)–(10), overlines indicate mean values (with respect to time), while ‘δ’s indicate small variations about those

means. Note that, while variations in sediment supply are imposed only at the valley inlet, changes in water supply are assumed

to affect the entire valley instantaneously (Equations 7–8).135

McNab et al. (2023) further showed that if sinusoidal fluctuations in water and sediment supply are imposed, so that

δQw(t) =AQw
Qw sin

(
2πt

P

)
, and (11)

δQs,0(t) =AQs,0Qs,0 sin
(

2πt

P

)
, (12)

then resulting fluctuations in elevation and sediment discharge are approximated by

δz(x,t)≈ z(AQs,0 −AQw
)Gz sin

(
2π

P
(t−φz)

)
, and (13)140

δQs(x,t)≈Qs,0(AQs,0 −AQw
)GQs

sin
(

2π

P
(t−φQs

)
)

. (14)

AQs,0 and AQw are dimensionless amplitudes, normalised by their mean values, of sediment supply and water discharge,

respectively. In Equations (11–14), P is the period of the imposed signal. The valley’s response to sinusoidal variations in

water and sediment supply is itself approximately sinusoidal, modulated by two parameters: ‘gain’, Gz and GQs
, and phase

shift, φz and φQs
. Gain describes the response amplitude relative to the amplitude of the imposed signal. A value of zero145

indicates that, despite imposed variation in water or sediment supply, there is no variation in elevation or sediment discharge.

A value between zero and one indicates that amplitudes of variation in elevation or sediment discharge are lower than those

imposed (i.e. the signal is damped, or buffered). A value of one indicates that the response and imposed signal have the same

amplitude, while a value greater than one indicates the that imposed signal is amplified. The phase shift, or lag, describes the

offset in time between the imposed signal and the valley response.150

McNab et al. (2023) provided analytical expressions for Gz , GQs
, φz and φQs

, and showed that they are principally con-

trolled by two key parameters: the relative distance along stream, x/L, and the forcing period relative to the valley’s equilibra-

tion time, P/Teq , where Teq = L2/κ (e.g. Paola et al., 1992). This result implies that for a given external forcing, the likelihood

of terrace formation, related to Gz , and its timing, related to φz , depend on the timescale of that forcing, the size of the system,

and the position along stream. Similarly, the likelihood of a detectable signal reaching downstream sedimentary basins, related155

to GQs
at the valley outlet, and its timing, related to φQs

at the outlet, also depend on the forcing timescale and the system

size.
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3 Approach

Our goal is to understand how along-stream sources of water and sediment and the geometries of alluvial valley networks

influence their responses to changing water and sediment supply. In turn, we wish to understand how distributions of terraces160

and their ages, as well as patterns of sediment accumulation in downstream basins, are related to external change. To this end,

we analyse numerical simulations of two geometric representations of a river system. In the first geometric representation,

we model a single-segment valley in which water and sediment are supplied along stream so that they increase continuously

according to a power law (hereafter the ‘single-segment, along-stream supply’ case). In the second geometric representation, we

model branching networks of converging tributaries, including a general case where all sediment and water are supplied at inlet165

segments and a general case where sediment and water are also supplied along stream. In each of these scenarios, we impose

periodic variations in sediment and water supply, and compute resulting variations in elevation and sediment discharge along

stream and throughout the network. From these results, we also compute gain and phase shift along stream and throughout

the network, and compare them to the analytical solutions of McNab et al. (2023) for the single segment, upstream supply

case. This approach allows us to characterise the valley response and isolate the influences of along-stream sediment and water170

sources and of network geometry.

4 Single-segment valleys with along-stream supply of water and sediment

4.1 Modelling framework

We supply water along stream so that water discharge increases continuously according to a power law:

Qw = kx,Qw(x + x0)px,Qw , (15)175

where kx,Qw is the power-law coefficient linking distance downstream to bankfull water discharge, px,Qw is the power-law

exponent, and x0 is a distance from the drainage divide at the valley inlet. This approach is similar to that of several previous

studies (e.g. Goldberg et al., 2021; Braun, 2022). Equation (15) is related to Hack’s Law, which connects downstream distance

to upstream drainage area (though commonly expressed in the opposite sense, with downstream distance as a function of

drainage area; Hack, 1957). However, the relationship between drainage area and bankfull water discharge is not linear, being180

influenced, for example, by catchment hydrology and the catchment’s size relative to that of the footprint of major rainfall

events (Sólyom and Tucker, 2004). These effects result in bankfull water discharge increasing more slowly downstream than

drainage area (Aron and Miller, 1978; O’Connor and Costa, 2004). We adapt the earlier definitions of equilibration time, Teq ,

(e.g. Paola et al., 1992) to account for along-stream variation in water discharge as follows:

Teq =
L2

⟨κ⟩ , (16)185

where the angled brackets indicate a spatial average.
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In an extension to previous studies, we also supply sediment along stream. We set the source term, U , in Equation (3), to

the sediment supply per unit distance along stream. We choose this along-stream sediment supply so that sediment discharge

at steady state also increases downstream according to a power law with the same form as Equation (15). As such,

U =
1

B(1−λp)
∂Qs

∂x
=

kx,Qspx,Qs(x + x0)px,Qs−1

B(1−λp)
=

1
B(1−λp)

Qs,0

Qw,0

∂Qw

∂x
. (17)190

4.2 Numerical simulations

We simulate five single-segment valleys in which sediment and water discharge increase at different rates, with 0.8≤ (px,Qw
=

px,Qs
)≤ 2.4 (Figure 3a). This range corresponds approximately to an inverse Hack’s law exponent in the range 1.6–2.4 (typical

values from global compilations, e.g. Shen et al., 2017; He et al., 2024), combined with an exponent linking drainage area to

bankfull water discharge in the range 0.5–1 (Aron and Miller, 1978; O’Connor and Costa, 2004; Sólyom and Tucker, 2004).195

For each valley, we choose kx,Qw and kx,Qs so that the ratio of sediment to water discharge remains constant along stream

and the average water and sediment discharge is equal across all five simulated valleys. As such, each valley has the same

steady-state slope, which is constant along stream, and the same equilibration time (Figure 3b).

For each valley, we performed a series of numerical simulations in which we varied sediment or water supply sinusoidally

(both at the inlet and along stream), with a range of periods between P/Teq = 10−2–102. We define gain numerically as200

Gz(x) =
max(z(x,t))−min(z(x,t))

2z(x)(AQs −AQw)
and (18)

GQs
(x) =

max(Qs(x,t))−min(Qs(x,t))
2Qs(x)(AQs

−AQw
)

, (19)

which we compute directly from the simulated time series of elevation and sediment discharge. To avoid the influence of

transient effects at the onset of periodic forcing, we measure gain only after two complete cycles (i.e. with t > 2P ). We

estimate the phase shift by extracting peaks and troughs in the simulated time series of elevation and sediment discharge and205

measuring the difference in time between them and peaks and troughs in the imposed signal. We then explore how gain and

lag vary along stream, as functions of forcing period and discharge exponent, and compare with those for the upstream supply

case (McNab et al., 2023).

4.3 Results

We first show simulated aggradation, incision and sediment discharge of an example valley with px,Qw = px,Qs = 1.6 at three210

forcing periods (Figures 4). To elucidate further how the valley response varies spatially, with forcing timescale, and with the

power-law exponent, we then show gain and lag for each valley as functions of downstream distance (Figure 5) and forcing

period (Figure 6). We found that, in all cases, patterns of long-profile evolution are similar regardless of whether sediment

supply or water supply is varied. We therefore only show variation in elevation driven by variation in sediment supply here

(equivalent results for variation in water supply are shown in Figures S1–3. To further simplify the presentation of results,215

while we consider how the long profile varies along stream, we focus on variation in sediment discharge only at the valley

outlet, which is most relevant for downstream sedimentary basins.
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Figure 3. Initial setup for case with along-stream supply of water and sediment, and comparison with the upstream supply case. (a) Water

discharge, Qw, (solid lines) and sediment discharge, Qs (dotted lines), as functions of distance downstream, where colour indicates power

exponents px,Qw = px,Qs . Dashed grey line shows spatial average, corresponding to the upstream supply case. (b) Elevation as a function

of distance downstream for the case with along-stream supply of water and sediment (solid lines) and the case with only upstream supply of

water and sediment (dashed line). Since the ratio of sediment to water discharge is held constant throughout the domain and between each

valley, the profiles are linear with the same slope as one another.

Broad patterns of aggradation and incision are similar for both the upstream and along-stream supply cases (Figures 4g–l, 5

and 6a,d). In both cases, when the forcing period is short relative to the valley’s equilibration time (P ≪ Teq), amplitudes of

aggradation and incision are low (Gz ≈ 0) and lag significantly behind the forcing (φz > 0). At intermediate forcing periods220

(P ≈ Teq), amplitudes are increased and lag times reduced. When forcing periods significantly exceed the equilibration time

(P ≫ Teq), aggradation and incision occurs with similar amplitudes to, and close to in phase with, the imposed variation

in sediment or water supply (Gz ≈ 6/7≈ 0.86, φz ≈ 0; the value of 6/7 is related to the 7/6 power on valley slope in the

sediment-discharge equation, Equation 2).
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Figure 4. Valley response to sinusoidal variation in sediment and water supply at three forcing periods, for the cases where all sediment

and water are supplied at the valley inlet (dashed lines) and where sediment and water are supplied along stream with a power law exponent

px,Qw = px,Qs = 1.6. (a–c) Red solid line shows normalised variation in sediment supply as a function of time; dashed grey line shows

normalised sediment discharge at the valley outlet for the upstream-supply case; solid black line shows normalised sediment discharge at

the valley outlet for the along-stream supply case; greyscale circles show times used in panel (j–l). (d–f) Same as (a–c) except blue solid

line shows normalised variation in water supply. (g–i) Elevation, z, as a function of time for selected positions along stream, in response to

changing sediment supply. Dashed grey lines represent upstream-supply case; solid, coloured lines represent along-stream supply case. (j–l)

Valley long profiles at different times for the along-stream supply case in response to changing sediment supply (for the upstream supply

case, compare with Figures 2 and 3 in McNab et al., 2023). Grey scale lines show long profiles, where shade corresponds to times represented

by circles on panel (a–c); bluescale lines show perturbations from the steady state profile, δz. Equivalents to panels (g–l) for variation in

water supply are shown in Figure S1.

11

https://doi.org/10.5194/egusphere-2025-2468
Preprint. Discussion started: 10 June 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 5. Elevation gain, Gz , and lag, φz , of valley response to changing sediment supply, as functions of distance downstream for three

forcing periods, P = Teq/10 (a & d); P = Teq (b & e); P = Teq × 10 (c & f). Dashed grey lines show Gz and φz for the case where all

sediment and water is supplied at the valley inlet (computed using the analytical expression given by McNab et al., 2023). Solid lines show

Gz and φz for the case where sediment and water are supplied continuously along stream, where colour represents power law exponent

px,Qw = px,Qs . Note that the saturation of Gz at 6/7 is related to the power of 7/6 in the sediment-transport equation (Equation 2). The

behaviour in response to changing water supply is very similar (Figure S2).

Nevertheless, some important differences in patterns of aggradation and incision do arise between the upstream and along-225

stream supply cases, most evident in the distributions of gain and lag as functions of downstream distance and forcing period

(Figures 5 and 6). First, in the along-stream supply case, Gz is larger and φz is generally lower than in the upstream supply case,

for a given forcing period. Second, in the upstream supply case, Gz and φz decrease and increase continuously downstream,

respectively (Figure 5). However, in the along-stream supply case, while Gz initially decreases and φz increases away from

the inlet, both reach turning points so that Gz increases and φz decreases towards the outlet. Third, while in the upstream230

supply case φz decreases continuously as the forcing period increases, in the along-stream supply case, it briefly increases to a
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Figure 6. Gain and lag as functions of forcing period. (a) Elevation gain, Gz , as a function of forcing period, P . Black line and grey band

show Gz at the valley outlet and its range throughout the valley, respectively, for the upstream supply case (computed using the analytical

expression given by McNab et al., 2023). Solid and dashed coloured lines show Gz at the valley outlet and inlet, respectively, for the along-

stream supply case, where colour represents power law exponent px,Qw = px,Qs . (b) As (a) for elevation lag, φz . Additionally, dotted lines

show maximum φz measured at any position along the valley for the along-stream supply case. Equivalents to panels (a–b) for variation in

water supply are shown in Figure S3. (c & d) As (a & b) for sediment discharge gain, GQs , and lag, φQs , for variation in sediment supply.

For simplicity, only values at the valley outlet are shown. (e & f) As (c & d) for variation in water supply.

maximum for periods close to the valley’s equilibration time (P ≈ Teq; Figure 6d). These differences generally become more

pronounced as the water- and sediment-discharge power-law exponents increase (Figures 5 and 6).

When sediment supply is varied, variation in sediment output follows similar patterns to aggradation and incision (Figures

4a–c and 6b,e). However, when water supply is varied, different behaviour emerges (Figures 4d–f and 6c,f). When the period235

of variation in water supply is short relative to the valley’s equilibration time (P ≪ Teq), variation in sediment output has the

same amplitude and is in phase with the forcing (GQs = 1, φQs = 0). In the upstream supply case, when the forcing period is

increased, the amplitude of variation in sediment output briefly exceeds that of the imposed variation in water supply (GQs
> 1

while P ≈ Teq), before decreasing to zero for long forcing periods. In the along-stream supply case, variation in sediment
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output is not amplified at periods close to the valley’s equilibration time, instead decreasing continuously as the forcing period240

increases. In both cases, negative lag times are introduced, so that peaks in sediment output precede corresponding peaks in

water supply.

4.4 Interpretation

Two concepts help explain physically the variations in valley response that arise due to changing sediment and water supply

(Figures 4–6). First, the extent to which the valley can adjust to external perturbations depends on the relationship between the245

perturbation timescale and the timescale over which the valley can aggrade and incise. At the valley scale, the approximate

timescale over which the valley can adjust is given by the equilibration time, Teq . At the local scale, however, the adjustment

efficiency is influenced by the local diffusivity (Equation 10). In the upstream case, diffusivity is uniform along the valley,

while in the along-stream supply case, it increases downstream with water discharge, so that the capacity for the valley to

adjust also increases downstream. Second, variation in sediment and water supply can be thought of as a signal introduced to250

the valley that can propagate along stream. In the upstream supply case, this signal takes the form of variations in slope at the

inlet, that must then propagate downstream. In the along-stream supply case, as well as signal originating from the valley inlet,

signal is introduced continuously along the valley, and propagates both up- and down-stream.

We first apply these concepts to patterns of aggradation and incision (Figures 4g–l, 5 and 6a,d). At the valley scale, when

sediment or water supply vary with periods much smaller than Teq , aggradation and incision cannot keep pace and amplitudes255

are low. As the forcing period increases to values similar to or greater than Teq , aggradation and incision can increasingly

keep pace and amplitudes increase. In the upstream supply case, signal is introduced only at the inlet, so that lag increases

continuously downstream as the signal propagates. For short forcing periods relative to Teq , incomplete adjustment causes the

signal to diffuse as it propagates, so that gain decreases downstream. In contrast, in the along-stream supply case, signal is

introduced continuously along stream, and diffusivity increases downstream as a result of increasing water discharge. As such,260

downstream parts of the valley do not need to ‘wait’ for signal to propagate from the inlet, and have a greater capacity to

adjust to the forcing. Away from the inlet, local signal sources therefore increasingly dominate, so that gain increases and lag

decreases towards the outlet (i.e., the signal appears to propagate upstream).

Peaks in lag at forcing periods close to Teq for the along-stream case reflect the interaction between local and upstream

signal sources (Figure 6d). At shorter forcing periods, signal introduced at the inlet quickly diffuses away, so that aggradation265

and incision further downstream is controlled only by local signal sources. At periods around Teq , signal introduced at the inlet

maintains some amplitude downstream, but takes time to propagate; the increasing influence of this upstream signal causes lag

times briefly to increase with increasing period. As the forcing period increases further, the signal propagates more efficiently

downstream, so that lag times again steadily decrease.

When sediment supply is varied, variation in sediment discharge is driven only by variation in valley slope (Equation 2).270

Thus, variation in sediment output closely follows that of aggradation and incision at the valley outlet: GQs
and φQs

behave

similarly to Gz and φz (Figures 4a–c and 6b,e).
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In contrast, when water supply is varied, it influences the valley’s capacity to transport sediment directly as well as triggering

variations in slope (Equation 2). Interactions can then arise between the imposed variation in water supply and the resulting

variations in slope that can be damped and lag behind the forcing (Figures 4a–c and 6b,e). At forcing periods much shorter275

than Teq , slopes do not adjust along much of the valley, so that variation in water supply is translated directly into to variation

in sediment output. Meanwhile, at forcing periods much longer than Teq , slopes can adjust to maintain an equilibrium with

sediment and water supply, so that sediment output varies little. At intermediate forcing periods, slopes partially adjust, but

lag behind the imposed variation in water supply. In the upstream supply case, variation in water supply and slope combine

to amplify the imposed signal, while in the along-stream supply case, amplitudes simply decrease from short to long forcing280

periods.

In both the upstream and along-stream supply cases, the delayed adjustment of valley slope leads to a negative lag in sediment

output, such that peaks in sediment output arise prior to imposed peaks in water supply (Figures 4d–f and 6f). Consider the onset

of sinusoidal variation in water supply. Initially, water supply increases without any adjustment of valley slope, so that sediment

output also increases. Valley slope then begins to decrease, so that sediment output increases more slowly and then begins to285

decrease. This transition occurs prior to water supply reaching its maximum, resulting in the negative lag or appearance that

variation in sediment output leads that of water supply.

5 Alluvial valley networks

5.1 Modelling framework

We model alluvial valley networks as a series of interconnected network segments, each of which follow Equation (3). We290

supply sediment and water to inlet segments (i.e. segments without any segments upstream), and impose base level at the

outlet segment (i.e. a segment without any segments downstream). In some cases, we also supply water and sediment along

stream, analogously to the single segment, along-stream supply case presented above. Within the network, a segment’s sediment

supply is set by the sum of sediment discharges from its upstream segments, while elevation is required to be continuous across

segment junctions. To solve Equation (3), we use the semi-implicit finite-difference scheme presented by Wickert and Schildgen295

(2019) adapted for a network (Wickert et al., 2024).

To define the network topology (i.e., the position of each segment in the network relative to its adjacent segments), we use an

approach introduced by Shreve (1966), following the algorithm outlined by Shreve (1974). This algorithm randomly generates

binary trees with a given number of valley inlet (or ‘exterior’) segments; an example is shown in Figure 7a–d. The algorithm

treats all possible binary trees as equally likely. It has been argued that populations of binary trees generated with this approach300

are not realistic representations of real river-network populations, because, unlike river networks, the trees produced are not

necessarily space filling (e.g. Dodds and Rothman, 2000). Abrahams (1984) discusses observations from real networks that

deviate from the predictions of Shreve’s model, often associated with space-filling constraints, but also occurring in regions

with high relief. We note that several other frameworks for randomly generating synthetic networks have been developed,

including, for example: undirected or directed random walks on lattices (Leopold and Langbein, 1962; Scheidegger, 1967);305
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models of headward growth and branching (Howard, 1971; Dunkerley, 1977); and the concept of ‘Optimal Channel Networks’

that seek to minimise energy expenditure involved in the transport of water across the landscape (Howard, 1990; Rodriíguez-

Iturbe et al., 1992). These approaches avoid the space-filling problem by constructing networks explicitly on two-dimensional

grids, but no consensus has emerged as to which most successfully recreates realistic network populations. Furthermore, our

model of long profile evolution and sediment transport does not require any spatial information beyond distances along stream310

and the topological relationships between segments. We therefore persist with Shreve’s approach, since it is relatively simple

and samples all possible binary trees, with the caveat that the statistics of network populations we obtain may deviate from

those of natural networks.

Once the network topology has been defined, lengths and properties such as water discharge and valley width need to

be assigned to each segment. In natural networks, segment lengths and widths vary, and water discharge is derived from315

upstream catchment areas as well as locally from groundwater and surface runoff. Such complexities may influence how

alluvial river networks respond to external variation in sediment and water supply, but they may also obfuscate more general

aspects of network behaviour. We therefore start with more simplified synthetic representations of alluvial river networks,

before progressively building complexity towards more naturalistic representations.

Specifically, we consider four network scenarios. In the simplest scenario, we set segment lengths to a uniform value of320

5 km and supply water and sediment only at the valley inlets (Figure 7a,e). In the second scenario, we draw random segment

lengths from a gamma distribution with a shape parameter of two and a mean of 5 km, following Shreve (1969) and Shreve

(1974), but still supply water and sediment only at the valley inlets (Figure 7b,f). Note that, unlike Shreve (1969) and Shreve

(1974), we do not use different length distributions for inlet and interior segments, for simplicity and due to a lack of evidence

for systematic differences between them (Abrahams, 1984). Shreve (1974) also showed that a segment’s local contributing325

area scales approximately linearly with its length, with a factor of around 300. In the third scenario, we therefore return to

uniform segment lengths, but add water and sediment along each segment as well as at the valley inlets (Figure 7c,g). In the

fourth scenario, we use non-uniform segment lengths and also add water and sediment along each segment (Figure 7d,h). In all

scenarios, we set values of upstream and along-stream water supply so that the mean across the network is 26 m3 s−1. We also

fix the ratio of sediment to water supply to a constant value of 10−4, and neglect any downstream fining, so that the network330

long profiles are linear at steady state (Figure 7i–l; cf. Pizzuto, 1992). We do not expect this choice to influence significantly

our results, since the diffusivity is only weakly dependent on valley slope (Equation 10). In all scenarios, we fix the valley

width to a uniform value; we return to the implications of this choice in the Discussion (Section 6.3).

5.2 Characterising network geometries

To explore how a network’s geometry influences its response to external forcing, we first need to be able to describe its335

geometry in a quantitative way. This topic has been the focus of considerable effort for the last few decades, so that many

network metrics have been proposed and applied. In the absence of a priori ideas regarding controls on network responses to

changing sediment and water supply, we test a range of existing metrics that quantify different aspects of network structure.
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Figure 7. (Previous page) Randomly generated networks for four scenarios: (a,e,i,m) uniform segment lengths with upstream supply of

sediment and water; (b,f,j,n) non-uniform segment lengths with upstream supply of sediment and water; (c,g,k,o) uniform segment lengths

with along-stream supply of sediment and water; and (d,h,l,p) non-uniform segment lengths with along-stream supply of sediment and

water. (a–d) Schematic network planforms, where colour indicates stream order (Strahler, 1952). Vertical axis has no physical meaning;

planforms are intended only to illustrate relationships between segments. (e–h) Discharge as a function of distance downstream. Insets show

discharge as a function of distance from furthest valley inlet, d, where circles represent each segment and dashed lines show best fit power

law relationship. Note that discharge axes for the main panel and inset change slightly between each case; ticks are consistently spaced at 40

m3 s−1. (i–l) Longitudinal profiles. (m–p) Number of segments (Nω , red), mean stream lengths (Lω , yellow) and mean stream discharges

(Qw,ω , blue), as functions of stream order, ω. Circles show measured values; dashed lines show best fit relationships, and their gradients

correspond to RB , RL, and RQw , respectively (Equations 20–23).

Horton (1945) developed an influential set of statistics describing network geometries that are now known as ‘Horton’s

laws’. These laws rely on the concept of ‘stream order’, which was later modified by Strahler (1952). Exterior segments are340

defined as first order streams. Where two first order streams combine, a second order stream is formed. Where a second order

stream meets a first order stream, the second order stream is lengthened; only when two second order streams meet is a third

order stream initiated, and so on. Thus streams of order two or greater can consist of multiple network segments. Horton (1945)

showed that, within a given network, the number of streams with order ω, Nω , decreases with stream order such that

Nω

Nω+1
≈RB , or Nω ≈RB

Ω−ω, (20)345

where Ω is the maximum stream order within the network. RB is termed the ‘bifurcation ratio’, and can be visualised as the

gradient of a linear function relating ω to Nω in linear-logarithmic space (Figure 7m–p). Horton (1945) also showed that stream

lengths increase with stream order, such that

Lω

Lω−1
≈RL, or Lω ≈RL

ω−1. (21)

Schumm (1956) showed that a similar rule applies to stream drainage areas:350

Aω

Aω+1
≈RA, or Aω ≈RA

ω−1. (22)

Lω and Aω are mean lengths and drainage areas, respectively, of streams with order ω; and RL and RA are termed the length

and area ratios, respectively. Since the synthetic networks used here have no inherent upstream drainage area, we define a

related statistic using water discharge:

Qw,ω

Qw,ω+1
≈RQw , or Qw,ω ≈RQw

ω−1, (23)355

where Qw,ω is mean water discharge of streams with order ω and RQw is the discharge ratio. Several authors have argued

that Horton’s laws retain relatively little information about network topology, and so are not particularly useful measures of

network structure (Jarvis and Werritty, 1975; Kirchner, 1993), though Costa-Cobral and Burges (1997) show that they can in
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some cases discriminate between network populations with different characteristics. We include them here for completeness

and consistency with the existing literature.360

Another limitation of Horton’s laws is that they do not distinguish between streams of a given order that flow into streams

of different higher orders (e.g., a first-order stream that flows into a second-order stream is treated the same as one that flows

into a third order stream). As such, they only hold exactly for networks in which streams of each order only flow into streams

exactly one order higher (Tarboton, 1996). Tokunaga (1978) devised an alternative scheme which does account for all possible

relationships between streams of different orders. Tokunaga defines the parameter ϵi as the average number of streams of365

order ω flowing into streams of order ω + i. They then define the parameter K as average decrease in ϵi as i is incrementally

increased, i.e. the average of ϵ1/ϵ2, ϵ2/ϵ3, . . . , ϵΩ−1/ϵΩ. K is therefore a more sophisticated version of Horton’s RB .

Another prominent series of network metrics are built around the concept of ‘topological length’ (e.g. Werner and Smart,

1973; Jarvis and Werritty, 1975). This framework is particularly attractive for the present problem since timescales of diffusive

processes are known to scale with a system’s length (e.g. Paola et al., 1992). A segment’s topological length, which we denote370

l, is defined as the number of segments from it to the outlet (including it and the outlet segment). Commonly used metrics

making use of the topological length are: the maximum topological length of all segments in the network, lmax (also known as

the network ‘diameter’); the average topological length of all segments in the network, ⟨l⟩; and the average topological length of

all inlet segments, ⟨lI⟩ (also known as the ‘mean source height’). Since some of the networks we analyse have variable segment

lengths, we also define an equivalent set of metrics that use absolute rather than topological lengths, i.e.: the maximum length375

to the outlet, Lmax; the mean length of all segments in the network to the outlet, ⟨L⟩; and the mean length from all inlet points

to the outlet, ⟨LI⟩ (cf. the catchment ‘centre of gravity’; Langbein, 1947; Gray, 1961).

Similar to the topological length is the concept of ‘topological width’, defined as the number of segments positioned at a

given topological length from the outlet, w (e.g. Kirkby, 1976; Ranjbar et al., 2018). Typically, the maximum topological width

in a network, wmax, is taken as a measure of a its structure; we also include the mean topological width, ⟨w⟩.380

Lastly, we make use of the widely documented power-law relationship between upstream drainage area and distance down-

stream from the drainage divide known as Hack’s law (Hack, 1957; Gray, 1961; Mueller, 1972). The exponent of this power

law provides a measure of the rate at which drainage area accumulates downstream. As in the case of RA above, since the

networks we analyse have no inherent upstream drainage area, we fit a power-law function relating a point’s distance from

the furthest inlet to its water discharge (insets in Figure 7e–h). The exponent of this power law, p, is then equivalent to a385

combination of an inverse Hack’s exponent and an exponent linking drainage area to bankfull water discharge.

5.3 Numerical simulations

For each of the four network scenarios described in Section 5.1, we performed two sets of simulations. First, to assess the range

of behaviour of networks with a fixed number of segments, we generated 200 networks each with 40 valley inlet segments

(corresponding to 69 segments in total). Second, to assess how network behaviour varies with the number of segments, we390

generated a set of networks with numbers of inlet segments between 2 and 150. We generated four distinct network topologies

for each number of inlet segments, for a total of 596 networks. For each network, we varied sediment and water supply
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sinusoidally with seven periods logarithmically between one hundredth and one hundred times the equilibration time, where

as an initial estimate, we define network equilibration time with the maximum stream length, Lmax (denoted Teq,max). We ran

each simulation for four full cycles with timesteps of one thousandth of the forcing period. After each simulation, we measured395

elevation gain, Gz , and lag, φz , throughout the network, and sediment-discharge gain and lag at the network outlet (GQs,L and

φQs,L, respectively).

In preparatory simulations, we found that networks responded to cyclical variations in sediment and water supply in broadly

similar ways to the simpler, one-dimensional cases described earlier. Nevertheless, we also found significant variability between

networks with the same number of segments, but different segment configurations, implying that a network’s configuration400

influences its response time. To quantify this variability, we compared GQs,L as a function of forcing period for each network

to the predictions for the simple single-segment case in which all sediment and water are supplied at the inlet. This single-

segment, upstream supply case has a well defined relationship between GQs,L and the forcing period normalised by the valley

equilibration time, P/Teq , which has been determined analytically (Figure 6b; McNab et al., 2023). We therefore define an

empirical network-equilibration time, T̂eq , that minimises the difference between the network GQs,L, obtained numerically, and405

the analytical prediction for the single-semgment, upstream supply case. From this equilibration time we define an ‘effective

length’, L̂, for the network, following the definition of equilibration time in Equation (16), given by

L̂ =
√

T̂eq⟨κ⟩. (24)

We can then compare empirical network equilibration times and effective lengths obtained in this way with network properties

to assess which features control the timescales of the network responses.410

5.4 Results

We first assess timescales of network responses to variation in sediment and water supply and their controls (Figures 9–11). We

then present broad patterns of aggradation, incision and sediment output as functions of forcing period, providing an overview

of the possible range of behaviour across catchments with different properties (Figure 12). Lastly, we explore in detail spatial

patterns of aggradation and incision, which influence the distribution and timing of terrace formation within networks (Figures415

13–15).

5.4.1 Timescales of network responses

In defining timescales of network responses to variation in sediment and water supply, we focus on sediment discharge at the

network outlet, which depends on the integrated response of the entire network. We first illustrate our procedure for calibrating

network equilibration times, T̂eq , with an example for a single network (Figure 8). Sediment-discharge gain at the network420

outlet, GQs,L, in response to varying sediment supply follows a broadly similar pattern to that of the single-segment cases

discussed earlier: GQs,L is close to zero for short forcing periods and approaches one for long forcing periods, with a transition

at intermediate periods. When the network equilibration time is defined using the network’s maximum length, Teq,max, this

transition occurs at shorter forcing periods than for the single-segment, upstream supply case, so that GQs,L for the network
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Figure 8. Procedure for calibrating network equilibration times, T̂eq , by minimising the difference between sediment-discharge gain at the

outlet, GQs,L, as a function of normalised forcing period, P/Teq , for a given network and the single-segment, upstream supply case. (a)

Black line shows GQs,L as a function of P/Teq for the single-segment, upstream supply case, according to analytical solution of McNab

et al. (2023). Grey circles show GQs,L for the network, where Teq is defined using the network’s maximum length. Blue circles show GQs,L

for the network, where Teq is defined as that which provides the optimal fit to the single-segment, upstream supply case. (b) Black line shows

root-mean-square (RMS) misfit between GQs,L for the network and for the single-segment, upstream supply case, as a function of network

Teq . Grey and blue circles show points corresponding to those shown in (a).

exceeds that of the analytical prediction (Figure 8a). The difference between GQs,L for the network and the single-segment,425

upstream supply case is reduced if smaller network equilibration times are used; we define the optimal value as the network’s

equilibration time, T̂eq (Figure 8b). In this case, the optimal value of T̂eq ≈ 33 kyr is approximately half that of the value

implied by the network’s main stream length, Teq,max ≈ 71 kyr.

We next consider the full set of network simulations with 40 inlet segments (Figure 9). When network equilibration time is

defined using the networks’ maximum lengths, Teq,max, there is considerable vertical spread in GQs,L (we used Teq,max to430

define the periods at which the simulations were run). At intermediate periods, GQs,L varies by up to a factor of approximately

two between networks at the same forcing period (Figure 9a–d). This variation in GQs,L confirms that networks with the same

number segments but different geometries respond differently to external forcing. Using T̂eq , the same measurements of GQs,L

spread out horizontally, closely following the predicted curve (Figure 9a–d). This horizontal spread corresponds to a range in

T̂eq between approximately 20–150 kyr, for the cases with uniform segment lengths, which can be attributed to differences435

in the network topology (see inset histograms in Figures 9e and g); this range increases to approximately 15–250 kyr for the

cases with non-uniform segment lengths (see inset histograms in Figures 9f and h). We obtain similar results for the set of

simulations with numbers of inlet segments ranging between 2 and 150 (Figure S4).

Equilibration times defined empirically in this way are only useful if they are predictable from measurable network prop-

erties; only then can they provide insight into the behaviour of natural systems. We therefore compute correlation coefficients440

between network effective lengths, L̂, derived from the empirical equilibration times (Equation 24), and the network proper-

ties defined in Section 5.2 (Figure 10; see Figures S5 and S6 for cross plots of all network metrics against L̂). For the set of

networks with 40 valley inlet segments, and uniform segment lengths, we obtain moderate correlations between L̂ and Hor-

21

https://doi.org/10.5194/egusphere-2025-2468
Preprint. Discussion started: 10 June 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 9. Gain for sediment discharge at the valley outlet, GQs,L, as function of forcing period, P , normalised by equilibration time, Teq ,

for the set of networks with number of inlet segments, N1=40. Circles represent networks, the black line represents the single segment

case where all sediment and water are supplied at the inlet, and the grey band represents range for the single-segment case with along-stream

supply of sediment and water, with power-law exponents px,Qw and px,Qs between 0.8 and 2.4. (a–d) Teq defined using maximum length (i.e.

maximum distance from valley inlet to outlet). (e–h) Empirical T̂eq optimised for each network to minimise the difference between GQs,L as

function of P/Teq of the network and the upstream supply case. Inset histograms show distributions of obtained T̂eq . (a,e) Uniform segment

lengths with no along-stream supply of sediment and water; (b,f) non-uniform segment lengths with no along-stream supply of sediment and

water; (c,g) uniform segment lengths with along-stream supply of sediment and water; (d,h) non-uniform segment lengths with along-stream

supply of sediment and water. Equivalent results for the set of networks with N1=2–150 are shown in Figure S4.

ton’s and Tokunaga’s topological metrics (r ≈0.4–0.6; Figure 10a,c). However, apart from for the length ratio RL, correlations

are greatly reduced for network case with non-uniform segment lengths and for the set with variable numbers of inlet seg-445

ments (Figure 10a–d). In general, the series of metrics based on topological and absolute lengths perform significantly better

(r > 0.6), in particular the average lengths (⟨l⟩, ⟨lI⟩, ⟨L⟩, ⟨LI⟩; r > 0.7). The average absolute lengths, ⟨L⟩ and ⟨LI⟩, perform

well across all network cases (r > 0.99), while the performance of the average topological lengths, ⟨l⟩ and ⟨lI⟩, deteriorates

for networks with non-uniform segment lengths (r ≈ 0.7). Relationships between ⟨LI⟩ and L̂ for each of the network scenarios
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are well approximated by linear relationships passing through the origin with gradients of 1.35–1.45 (Figure 10e–l). We find450

moderate negative correlations between effective length and topological widths and the inverse Hack exponent, p. In particular,

the mean topological width, ⟨w⟩, performs well for networks with uniform segment lengths (r ≈−0.8), but, as with the topo-

logical length metrics, this relationship deteriorates for networks with non-uniform segment lengths. For the set of networks

with variable numbers of valley inlet segments, these correlations become positive and decrease in magnitude.

Both the mean length, ⟨L⟩, and the mean inlet length, ⟨LI⟩, predict network effective length equally well. In the remainder455

of the paper, we focus on ⟨LI⟩; it is, to us, more intuitively connected to the length of a single-segment valley. This choice is,

nevertheless, arbitrary, and similar arguments to those we make in the following also apply to ⟨L⟩.
The distributions of L̂ as a function of ⟨LI⟩ for the set of networks with 2–150 valley inlet segments are slightly non-linear,

implying that the ratio of L̂ to ⟨LI⟩ varies with network size (Figure 10i–l). Indeed, in every scenario, L̂/⟨LI⟩ is close to one

for small numbers of inlet segments, then increases quickly as the the number of inlets segments increases, until about 50 inlet460

segments are reached, after which it increases more slowly (Figure 11). In our simulations, the upstream supply cases reach a

maximum value of L̂/⟨LI⟩ ≈ 1.45, while the along-stream supply cases reach a slightly lower maximum of L̂/⟨LI⟩ ≈ 1.42.

The scenarios with non-uniform segment lengths (Figures 11b&d) show considerably more scatter than those with uniform

segment lengths (Figures 11a&c).

5.4.2 Network response as function of forcing period465

Accounting for the effects of networks’ structure on their equilibration times allows us to explore their behaviour in more detail

within a common reference frame. In the following, we show how gain and lag vary as a function of period, where period is

normalised by the networks’ individual equilibration times, T̂eq , determined above (Figure 12, for results with N1=40; Figure

S8 for results with N1=2–150). As with the simple one dimensional cases, we found that elevation gain, Gz , and lag, φz , are

similar regardless of whether sediment or water supply is varied. Therefore, only the results for variation in sediment supply470

are shown (Figures 12a–h and S8a–h); corresponding results for variation in water supply are shown in Figures S7 and S9.

For each of the network scenarios, Gz , like GQs,L, follows a similar pattern to the single segment cases: it remains close

to zero for short forcing periods and increases to approximately 6/7 (≈ 0.86) as the forcing period increases beyond the

equilibration time (Figures 12a–d). The range in Gz within individual networks is, however, significantly larger than for the

single-segment cases. The network scenarios with non-uniform segment lengths (Figures 12b&d) also show a greater range475

and variability than those with uniform segment lengths (Figures 12a&c). φz/P , as in the single-segment cases, is generally

largest for small forcing periods and decreases for longer forcing periods (Figures 12e–h). This pattern particularly holds

for the networks with only upstream supply of sediment and water, for which φz typically lies between the single-segment,

upstream and along-stream supply cases (Figures 12e&f). However, for the network scenarios with along-stream supply of

sediment and water, φz/P reaches a peak of around 0.2 with P/T̂eq ≈ 10−1, and then begins to decrease slightly for shorter480

periods (Figures 12g&h). There, the along-stream range in φz is also considerably lower than for networks without along-

stream supply of sediment and water. Similar patterns are seen in single-segment cases with along-stream supply of sediment

and water (Figure 6d).
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Figure 10. Controls on the network effective length, L̂, for four network scenarios with: (a,e,i) uniform segment lengths with no along-

stream supply of sediment and water; (b,f,j) non-uniform segment lengths with no along-stream supply of sediment and water; (c,g,k)

uniform segment lengths with along-stream supply of sediment and water; (d,h,l) non-uniform segment lengths with along-stream supply of

sediment and water. (a–d) Pearson’s correlation coefficient, r, between L̂ and selected network properties. Blue bars represent sets of 200

networks each with 40 valley inlet segments; orange bars represent sets of 600 networks with 2–150 valley inlet segments. (e–h) Circles

show L̂ as a function of mean length, ⟨LI⟩, for each network in the sets of simulations with 40 valley inlet segments. Histograms show

distributions of each variable. Dashed lines show best-fit linear relationship, constrained to pass through the origin. (i–l) As (e–h) for the sets

of simulations with 2–150 valley inlet segments.
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Figure 11. (a–d) Network effective lengths, L̂; (e–h) mean inlet lengths, ⟨LI⟩; and (i–l) their ratio as functions of the number of valley inlet

segments, N1, for four network scenarios with: (a,e,i) uniform segment lengths with no along-stream supply of sediment and water; (b,f,j)

non-uniform segment lengths with no along-stream supply of sediment and water; (c,g,k) uniform segment lengths with along-stream supply

of sediment and water; (d,h,l) non-uniform segment lengths with along-stream supply of sediment and water. Circles represent individual

networks; blue belong to set of simulations with N1 fixed to 40, while orange belong to set with N1 between 2 and 150. Diamonds represent

binned values.

When sediment supply is varied, sediment-discharge gain, GQs , and lag, φQs , at the valley outlet vary in similar ways to

those described for Gz and φz above (Figures 12i–p). However, as in the single-segment cases, different patterns arise when485

water supply is varied (Figures 12q–x). There, GQs,L is approximately one for short forcing periods, and drops to zero for long

forcing periods. Unlike the single-segment, upstream supply case, but similar to the single segment, along-stream supply case,
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Figure 12. (Previous page) Gain, G, and lag, φ, as functions of forcing period, P , normalised to empirical equilibration time, T̂eq , for the

set of networks with number of inlet segments, N1=40. Four network scenarios are shown: (a,e,i,m,q,u) uniform segment lengths with no

along-stream supply of sediment and water; (b,f,j,n,r,v) non-uniform segment lengths with no along-stream supply of sediment and water;

(c,g,k,o,s,w) uniform segment lengths with along-stream supply of sediment and water; (d,h,l,p,t,x) non-uniform segment lengths with along-

stream supply of sediment and water. (a–d) Elevation gain, Gz , in response to variation in sediment supply. Circles represent value at the

network outlet, where error bars represent range throughout network. Black line and grey band represent value at outlet and range along

stream, respectively, for simple case with all water and sediment supplied at the inlet. Pink band represents range along stream for simple

case with along-stream supply of water and sediment, for power-law exponents px,Qw = px,Qs = 1.4–2.2. (e–h) As (a–d) for elevation lag.

(i–p) As (a–h) for sediment-discharge gain, GQs , and lag, φQs . Note that only values for the outlet are shown. Panels (i–l) are the same

as Figure 9e–h. (q–x) As (i–p) for response to variation in water supply. Equivalent results to panels (a–h) for variation in water supply are

shown in Figure S7. Equivalent results for the set of networks with N1=2–150 are shown in Figures S8 and S9.

there is no significant amplification (GQs,L > 1) at intermediate periods. φQs,L, again similar to the single segment cases, is

zero for short forcing periods and drops to −0.25 for long forcing periods.

5.4.3 Spatial patterns of aggradation and incision490

Patterns of aggradation and incision vary spatially within networks, in ways that depend on network geometry and could

influence the distribution and timing of terrace formation (Figures 13–15). We first illustrate how gain and lag vary spatially,

as well as corresponding elevation time series for selected segments, for an example network simulation with forcing period

equal to its equilibration time (Figure 13). We then show gain and lag as functions of downstream distance, for all four cases of

the same network topology and a range of forcing periods (Figure 14). Finally, we show how these patterns vary for different495

network topologies, distributed from most compact to most elongate (Figure 15). It is impractical to show here results from each

of the 796 networks we tested; we do, however, provide a script in the accompanying software repository allowing interested

readers to plot the entire dataset (McNab, 2025).

Some general patterns in amplitudes of aggradation and incision can be identified. Gz is broadly lowest upstream and highest

downstream in the network. It steadily increases downstream along the higher order segments (in the example here, ω > 2),500

similar to patterns in mid/downstream sections of the single-segment case with along-stream supply of sediment and water

(Figure 5b, Figure 14a–d,i–l,q–t). However, on lower order streams (here ω ≤ 2), Gz is generally highest at the inlet and

decreases downstream, similar to the simple one-dimensional case with all sediment and water supplied at the inlet, and to the

uppermost sections of the one-dimensional case with continuous supply of sediment and water along stream. Gz is generally

highest at the inlet of tributaries that meet higher order segments near the network’s downstream end. This pattern holds also505

for short forcing periods (P ≈ Teq/10), where, while amplitudes of aggradation and incision approach zero along higher order

segments, appreciable amplitudes remain on some lower order segments (Figure 14a–d).

φz is broadly highest upstream and lowest downstream in the network. It steadily decreases downstream along the higher

order segments, similar to patterns in mid-/down-stream sections of the single segment, along-stream supply case (Figure
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Figure 13. Spatial variation of gain, Gz , and lag, φz/P , within a network with uniform segment lengths and no along-stream supply of

sediment and water, when sediment supply is varied with a period, P , equal to the network’s empirically obtained equilibration time, T̂eq .

(a) Schematic network planform shaded by stream order. Thicker grey lines highlight streams, while circles show positions of specific nodes,

whose evolution are shown in (d–f). (a) As (a) shaded by Gz . (c) As (a) shaded by φz/P . (d) Elevation, z, as a function of time, t, for

selected nodes along stream (i), as shown in (a–c). Grey lines show timing of peaks and troughs in the imposed forcing; circles show peaks

and troughs in elevation. Colours indicate stream order. (e) As (d) for tributary streams (ii–iv). (f) As (d) for tributary streams (v–vii).

5e, Figure 13c, Figure 14e–h,m–p,u–x). However, on lower order segments, φz is generally lowest at the inlet and increases510

downstream, similar to the single segment, upstream supply case, and to the uppermost sections of the single segment, along-

stream supply case (Figure 5e, Figure 13d, 14e–h,m–p,u–x). This increase in φz downstream occurs more rapidly for shorter

forcing periods (compare Figure 14e–h, for P = Teq/10 with Figure 14m–o, for P = Teq). As such, φz is generally lowest at
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Figure 14. (Previous page) Gain, Gz , and lag, φz/P , as functions of downstream distance for three forcing periods and networks with: (a,

e, i, m, q, u) uniform and (b, f, j, n, r, v) non-uniform segment lengths and upstream supply of sediment and water; (c, g, k, o, s, w) uniform

and (d, h, l, p, t, x) non-uniform segment lengths with along-stream supply of sediment and water. (a–d) Gz as function of downstream

distance where P = T̂eq/10. Solid lines show network segments shaded by stream order. Black dashed line shows simple one dimensional

case where all sediment and water is supplied at the valley inlet, with length equal to the network empirical effective length, L̂. Grey

dashed/dotted line shows one dimensional case where sediment and water are supplied continuously along stream, with power-law exponent

equal to the network’s best-fitting exponent, and with length equal to the network’s trunk stream length. (e–h) As (a–d) for φz . (i–p) As (a–h)

for P = T̂eq . (q–x) As (a–h) for P = T̂eq × 10.

the inlets of, and increases most rapidly along, lower order segments that meet higher order segments near the valley outlet. For

the network scenarios with non-uniform segment lengths, these patterns hold for short, lower order segments, but for longer515

ones, φz first increases downstream, before reaching a peak and decreasing downstream before meeting higher order segments

(e.g., Figure 14f,h).

Comparing networks with different geometries, these patterns are most straightforwardly expressed for more elongate net-

works, which contain a single higher order main stream fed by short lower order streams (Figure 15d,h,l). As networks become

more compact, middle order streams arise with behaviour intermediate between the lower order and higher order end members520

(Figure 15a–c,e–g,i–k). This range of behaviour leads to more complex patterns of aggradation and incision that depend on

specific network geometry.

5.5 Interpretation

As in the single segment case, network responses to variation in sediment and water supply can be understood in terms of the

relative timescales of the forcing and network aggradation and incision, and of signal propagation through the network (Figures525

9–15). In both network cases, signal is now introduced at multiple valley inlets, while, in the along-stream supply case, signal

is also introduced internally along each network segment. On individual segments, variation in sediment and water delivery

from upstream segments transmits signal downstream, while aggradation and incision of downstream segments drives local

base-level variation and transmits signal upstream. As in the single-segment, along-stream supply case, accumulation of water

downstream means that diffusivity, and the capacity for segments to adjust to external forcing, is greater in downstream, higher530

order parts of the network.

It is well understood that, in the single-segment case, the timescale over which a diffusive system evolves is set by the

square of its length (e.g. Paola et al., 1992). In the network case, signal is introduced at range of distances from, and therefore

must propagate a range of distances to, the network outlet. Our results suggest that the timescale over which a network can

aggrade and incise is controlled by the average of these distances (in our terminology, the mean inlet length, ⟨LI⟩; Figures535

9–11). This result may also be related to that of Jarvis and Werritty (1975), who showed that metrics related to a network’s

mean length retain more information about network structure than those focused on branching statistics (i.e. Horton’s and

Tokunaga’s laws) or the accumulation of drainage area and water discharge (i.e. Hack’s law). For example, two networks can
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Figure 15. Gain, Gz , and lag, φz/P , as functions of downstream distance for networks with a range of mean lengths. From the set of

networks with number of inlet segments, N1=40, we select networks with mean lengths corresponding to the 1st (i.e. shortest) percentile

(a,e,i), 33rd percentile (b,f,j), 66th percentile (c,g,k), and 99th (i.e. longest) percentile. (a–d) Schematic network planforms, where colour

indicates stream order. Vertical axis has no physical meaning; planforms are intended only to illustrate relationships between segments. (e–h)

Gz as function of downstream distance. Solid lines show network segments shaded by stream order. Black dashed line shows simple one

dimensional case where all sediment and water is supplied at the valley inlet, with length equal to the network empirical effective length,

L̂. Grey dashed/dotted line shows one dimensional case where sediment and water are supplied continuously along stream, with power-law

exponent equal to the network’s best-fitting exponent, and with length equal to the network’s trunk stream length. (i–l) As (a–d) for φz .
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have the same maximum length but very different distributions of segments; the mean length, in contrast, takes into account

the entire network structure.540

This framework also helps make sense of spatial variation in the network response (Figures 13–15). On lower order streams,

the response is dominated by signal propagating from upstream inlets: Gz therefore generally decreases and φz generally

increases downstream. Higher order streams, in contrast, are influenced by signal propagating from a range of distances up-

and down-stream, as well as, in the along-stream supply case, local signal sources. Signals introduced far upstream take

time to propagate to high order segments and lose amplitude as they do so. However, signals introduced on short tributaries545

can propagate efficiently to higher order streams, behaving similarly to the local sources of the single-segment along-stream

supply case. Combined with increased diffusivity on higher order segments, these effects result in a general increase in Gz and

decrease in φz along higher order segments, similar to single segment, along steam supply case. Higher amplitudes and lower

lags on higher order segments also feed back to short adjacent tributaries by varying their base level. Thus, Gz is maximised

and φz minimised on short tributaries close to the valley outlet.550

6 Discussion

6.1 Single-segment models can predict integrated network behaviour

We have shown that simplified, single-segment models with only upstream supply of sediment and water can accurately predict

amplitudes of variation in sediment export from more complex network models, provided an appropriate lengthscale is chosen

(Figures 8–11). We also showed that the appropriate lengthscale for a given network is predictable from its geometry. Specif-555

ically, the mean inlet length provides the best predictor of variation in response amplitudes introduced by network geometry.

As such, we propose a modified definition of alluvial river equilibration time appropriate for networks:

Teq =
L̂2

⟨κ⟩ ≈
kL

2⟨LI⟩2
⟨κ⟩ , (25)

where kL is a coefficient scaling mean inlet length, ⟨LI⟩, to effective length, L̂. The value of kL depends on the number of

network segments and on how discharge varies throughout the network. In our simulations, it increased from close to one for560

networks with few segments to approximately 1.4–1.45 for networks with many segments. It may continue to rise slowly for

larger networks than those tested here (Figure 11).

This result implies that, if our main concern is the amplitudes of variation in sediment discharge at the network outlet (e.g.,

for studies of downstream stratigraphic records), we can use simplified single-segment models, and avoid the complexity and

computational cost of network implementations. We note that single-segment models with only upstream supply of sediment565

and water do not predict network lag times as effectively as their amplitudes (Figure 12). When sediment supply is varied at

relatively short forcing periods (P < Teq), lag times for networks with only upstream supply are lower than predicted by the

single-segment case and considerable scatter is introduced. This result suggests that, for networks forced at high frequencies

with respect to their response times, factors other than network mean length influence lag times at the outlet. For networks
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with along-stream supply of sediment and water, lag times are more coherent across the range of forcing periods we tested,570

but follow the single-segment, along-stream supply case more closely than the single-segment, upstream supply case. We

also stress that, in all our simulations, we varied sediment and water supply uniformly across the network. In reality, forcing

could occur more locally, for example if a large landslide delivers excess sediment to a specific tributary, or if orographic

effects influence precipitation patterns across a catchment. Such localised forcing may affect sediment discharge at the outlet

in different ways from the simulations shown here, depending, for example, on the distance from the outlet at which the forcing575

occurs.

What controls a network’s mean inlet length? In our simulations, we constructed networks with specified numbers of seg-

ments and specified (average) segment lengths, approximately corresponding to a consistent drainage area. In such network

populations, the shortest mean lengths occur in the most compact networks, while the longest mean lengths occur in the most

elongate (Figure 15). However, in nature, spatial constraints such as coastlines or fault-bounded mountain ranges may be more580

relevant, and could instead fix a network’s main stream or maximum length. Comparing networks with equal main stream

lengths, the relationship is reversed: the shortest mean lengths occur in the most elongate networks, while the longest mean

lengths occur in the broadest networks. Robinson and Scheingross (2024) argued that, while tributaries tend to be arranged in a

regular fashion in tectonically quiescent areas, this pattern can be disrupted by faulting in tectonically active areas. This result

implies that network structures in tectonically active regions can be particularly irregular, which could lead to a wide range585

of mean lengths, equilibration times, and responses to external forcing in adjacent catchments of apparently similar sizes. Yi

et al. (2018) also showed that basins tend to be more elongate in more arid regions. Depending on whether networks of similar

drainage areas or similar main stream lengths are compared, this effect could introduce a tendency towards longer network

mean lengths and response times, or shorter mean lengths or response times, respectively. These patterns may therefore ex-

acerbate or counteract to some extent the effect of reduced water discharge on the response time of alluvial networks in arid590

regions (Equation 10; e.g. McNab et al., 2023).

6.2 Detailed network behaviour is complex and network dependent

Although networks’ integrated responses to external forcing, as expressed in variations in sediment discharge at their outlets,

appear to be predictable using simplified, single-segment models, patterns of aggradation and incision within them show con-

siderable complexity (Figures 13–15). Specifically, amplitudes of aggradation and incision (Gz) and the extent to which they595

lag behind the imposed forcing (φz) vary along stream and between streams of different orders. This complexity arises despite

relatively simple, spatially uniform, sinusoidal variations in sediment and water supply, as a consequence of the dynamics of

signal propagation in a network (in contrast to the relatively simple, unidirectional signal propagation associated with single-

segment models). Complex distributions of terraces and their ages in natural networks therefore need not imply complex and

local variations in sediment and water supply. In detail, patterns of Gz and φz throughout a specific network depend on its600

specific structure. We therefore argue that, if a detailed understanding of dynamics of aggradation and incision in a specific

network are desirable—for example, to aid interpretation of terrace ages or geometries—then that specific network should be
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modelled using approaches like the one we employ here. Nevertheless, there are some general features in patterns of Gz and

φz that appear to be common to most networks and have implications for the distribution and timing of terrace formation.

Gz describes variations in the amplitude of aggradation and incision, relative to imposed variations in sediment and water605

supply, which in turn influence the likelihood of terrace formation and preservation; higher amplitudes of aggradation and inci-

sion are more likely to result in long lived terrace sequences (Figures 13b,d–f and 14a–d,i–p,q–t). Note that, to obtain absolute

amplitudes of aggradation and incision, Gz is multiplied by steady state elevation (Equation 13), so that it modulates a general

tendency towards higher amplitudes at greater distances from the outlet (McNab et al., 2023). Gz is generally higher closer to

the network outlet, canceling out to some extent the natural tendency for amplitudes of aggradation and incision to decrease610

towards the outlet, and thus promoting terrace formation further downstream. On lower order segments that join higher order

segments near the outlet, Gz decreases rapidly downstream, so that amplitudes of aggradation and incision decrease particu-

larly quickly (Figures 13e,f and 14a–d). On such tributaries, terrace formation is therefore more likely than on adjacent higher

order segments, but this likelihood decreases quickly away from valley inlets towards higher order segments. Appreciable am-

plitudes of aggradation and incision (Gz ≈0.2) persist on such segments even for short forcing periods, suggesting that terrace615

formation is possible in specific parts of a network even when the timescales of variation in sediment or water supply are much

shorter than its equilibration time (P ≈ Teq/10; Figure 14a–d).

Spatial variation in φz implies that terrace formation can occur diachronously throughout a network, and result in a single

terrace surface whose age varies spatially despite a simple, spatially uniform forcing (Figures 13c,d–f and 14e–h,m–p,u–x). On

higher order segments, φz generally increases upstream, so that terrace formation will occur progressively later away from the620

network outlet. This pattern may superficially resemble upstream propagation of a signal introduced at the valley outlet (i.e.,

base-level variations), despite being driven by variation in sediment and water supply evenly distributed across the network

and its inlets. It arises because signal can arrive at higher order segments relatively efficiently along short tributaries; high

order segments that can then, due to their larger discharges and diffusivities, adjust most efficiently. On lower order segments,

φz generally increases away from valley inlets, so that terrace formation will appear to propagate downstream. This effect is625

particularly pronounced on lower order segments that join higher order segments close to the network outlet, where φz can

increase rapidly downstream and could generate a wide range of terrace ages over a relatively short distance (Figures 13e,f

and 14e–h,m–p). This pattern arises because these segments experience both direct forcing at their upstream ends, as well as

significant variation in local base level associated with the efficient aggradation and incision of higher order segments at their

downstream ends.630

6.3 Variation in valley width

Throughout our analysis thus far, we have treated valley width, B, as a constant. In natural alluvial valley networks, it can

vary both in time and space. That valley widths evolve through time is clear from the preservation of paired terrace sequences,

which necessarily record valley narrowing over time (e.g., Tofelde et al., 2022). Models describing the lateral evolution of

alluvial valleys have been developed, and could in future be coupled with our network implementation of the long profile635
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model of Wickert and Schildgen (2019) to explore the effects such behaviour (e.g., Hancock and Anderson, 2002; Turowski

et al., 2024b).

Several studies have also explored how valley width varies along stream, and in particular as a function of upstream drainage

area (e.g. Snyder et al., 2003; Brocard and van der Beek, 2006; Beeson et al., 2018; Clubb et al., 2022). Such measurements

can contain significant noise, with considerable short wavelength variation, but typically take a power-law form on average.640

Turowski et al. (2024a) combined a compilation of observed power-law parameters with theoretical arguments to conclude

that plausible power-law exponents are in the range 0.03–0.9, with a likeliest value around 0.4–0.5. This broad range suggests

that valley width can remain essentially constant downstream, or increase almost as quickly as upstream drainage area (and,

by extension, water discharge). Our preceding analysis therefore represents one end member of along-stream valley-width

behaviour. To explore the other end member, we ran a second set of simulations in which valley width increased downstream645

at the same rate as water discharge. This formulation is mathematically convenient because the increasing valley width cancels

out the effects of increasing water discharge on the efficiency of sediment transport, so that the diffusivity becomes constant

across the network (Equation 10).

The majority of results for this non-uniform valley width case are very similar to those for the uniform valley width case

(see Figures S10–S15 for single-segment results and Figures S16–S27 for network results). Again, amplitudes of variation650

in sediment discharge at the network outlet (GQs ) are well approximated by analytical predictions for the single-segment,

upstream supply case (Figure S16). Effective lengths obtained for the non-uniform valley width case also correlate closely

with network mean length (Figure S18–S20). Ratios of effective length to mean length, kL, are lower than in the uniform

valley width case (up to 1.16 for upstream supply cases and 1.13 for along-stream supply cases; Figure S21).

Some differences between the uniform and non-uniform valley width cases do arise, because, in the former, diffusivity in-655

creases downstream as water accumulates, whereas in the latter, diffusivity is spatially constant. In the uniform valley width

case, signal propagation is relatively inefficient upstream or on lower order segments where discharge is low, whereas down-

stream or on higher order segments with larger discharge can adjust more efficiently. This pattern contributes to a general

increase in Gz and decrease in φz towards the network outlet. In contrast, in the non-uniform valley width case, signal prop-

agation is equally efficient throughout the network, so that signal propagating from upstream valley inlets has more influence660

farther downstream, and distributions of Gz and φz are more symmetrical along stream. In the single-segment case, minima in

gain and maxima in lag occur further downstream than in equivalent models with uniform valley width (Figures S12 and S13).

In the network case, Gz and φz are more uniform along higher order segments, and differences between lower order segments

near the outlet and those further upstream are less pronounced (Figure S26–S27).

This analysis accounts for the effects of smoothly varying valley widths, likely to be representative of alluvial valley networks665

on average. However, significant local variability can arise, due to, for example, lithological variations, distributions of tectonic

structures such as active faults, or geologically recent drainage integration, so that natural networks can contain anomalously

narrow or wide reaches (e.g., Hilgendorf et al., 2020; Clubb et al., 2023). Very narrow sections will efficiently transmit signals

up- and down-stream, increasing response amplitudes and decreasing response lag times in surrounding parts of the network.

Meanwhile, very wide sections will adjust slowly and, depending on the timescale, could act as local points of fixed elevation,670
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decoupling upstream sections from the rest of the network. How such dynamics play out in nature will need to be assessed on

a network-by-network basis.

7 Conclusions

All alluvial rivers exist as parts of networks. We therefore extended a model describing the evolution of alluvial river longitu-

dinal profiles to account for interactions between interconnected river segments, as well as lateral sediment input, and explored675

the response of large numbers of synthetic networks to sinusoidal variations in sediment and water supply. Our network imple-

mentation has several features distinct from single-segment models, and these features influence the dynamics of aggradation,

incision and sediment transport. In particular: sediment and water supply signals are introduced at inlet segments distributed

at varying distances from the outlet; individual segments are influenced by variation in sediment and water supply from up-

stream segments alongside variation in local base level driven by downstream and adjacent segments; and water discharge680

increases downstream at discrete intervals as tributaries coalesce, so that the efficiency of the valley response also increases

discontinuously downstream. (This last effect may be counteracted to some extent by increasing valley width downstream.)

These network dynamics result in behaviour that, when integrated across the entire network, can resemble that of single-

segment models. For example, when sediment supply is varied, amplitudes of variation in sediment discharge at the outlet are

small for short forcing periods and large for long forcing periods, with a transition when periods are close to the system’s685

equilibration time. We have shown that, for networks, the equilibration time scales with mean inlet length, or mean distance

from valley inlets to the outlet. This result may justify the use of single-segment models in studies focused on sediment delivery

to downstream sedimentary basins.

Significant complexity does arise, however, in spatial patterns of aggradation and incision across a network. Amplitudes of

aggradation and incision, and the extent to which they lag behind imposed variation in sediment or water supply, depend on a690

segment’s order, its position along stream, and the overall structure of the network. While we have highlighted some general

patterns, these details ultimately depend on the specific network in question. We therefore suggest that, for applications that

rely on patterns of aggradation and incision in specific catchments, such as interpreting the spatial distribution and timing of

terrace formation, models that account for specific catchments’ network structure are required.

We have shown that simply accounting for network structure—a fundamental feature of alluvial river systems—introduces695

a rich range of behaviour that is not, for many applications, adequately captured by single-segment models. Nevertheless, our

simulations remain simplified relative to natural catchments and forcing scenarios, with sinusoidal variation in sediment and

water supply imposed uniformly across the network, and valley width held constant or set to increase smoothly with water

discharge. Much remains to be explored: For example, how do spatially non-uniform signals, such as local sediment delivery

from large landslides or changes in spatial patterns of precipitation, propagate through a catchment? Or: how do anomalously700

narrow or wide valley reaches influence network behaviour? Such problems are tractable within our modelling framework,

which we hope will ultimately facilitate more robust interpretations of stratigraphic and geomorphic archives in terms of past

climatic and tectonic change.

36

https://doi.org/10.5194/egusphere-2025-2468
Preprint. Discussion started: 10 June 2025
c© Author(s) 2025. CC BY 4.0 License.



Code and data availability. All software and data necessary to recreate the analyses shown here are included in the accompanying repository

(McNab, 2025). To construct synthetic networks and solve the equations of sediment transport and long profile evolution, we used the GRLP705

package (v2.0.0-beta; Wickert et al., 2024). We used Generic Mapping Tools (v6.5) to plot the final figures (Wessel et al., 2019).

Appendix A: Notation

κ Diffusivity [m2 s−1]

⟨κ⟩ Spatial mean diffusivity [m2 s−1]

λp Bedload sediment porosity [–]710

φz Elevation lag [s]

φQs
Sediment-discharge lag [s]

ω Stream order [–]

Ω Maximum stream order in a given network [–]

AQs
Amplitude of variation in sediment supply, relative to mean [–]715

AQw Amplitude of variation in water supply, relative to mean [–]

B Valley width [m]

Gz Elevation gain [–]

GQs
Sediment-discharge gain [–]

K Tokunaga’s coefficient [–]720

kL Coefficient scaling mean length, ⟨L⟩, to effective length, L̂ [–]

kQs
Bedload sediment-discharge coefficient [–]

kx,Qs Coefficient in power-law relationship linking downstream distance and sediment discarge [m3−px,Qs s−1]

kx,Qw Coefficient in power-law relationship linking downstream distance and water discarge [m3−px,Qw s−1]

l Topological length [–]725

lmax Maximum topological length [–]

⟨l⟩ Mean topological length [–]
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⟨lI⟩ Mean topological length of inlet segments [–]

L Absolute length [m]

Lmax Maximum absolute length [m]730

⟨L⟩ Mean absolute length [m]

⟨LI⟩ Mean absolute length of inlet segments [m]

L̂ Empirical network effective length [m]

I Intermittency of bankfull water discharge [–]

P Period of sinusoidal forcing [s]735

px,Qs
Exponent in power-law relationship linking downstream distance and sediment discharge [–]

px,Qw Exponent in power-law relationship linking downstream distance and water discharge [–]

Qs Bedload sediment discharge [m3 s−1]

Qs,0 Input bedload sediment discharge [m3 s−1]

Qw Bankfull water discharge [m3 s−1]740

Qw,0 Input bankfull water discharge [m3 s−1]

RB Bifurcation ratio (Horton, 1945) [–]

RL Length ratio (Horton, 1945) [–]

RA Area ratio (Schumm, 1956) [–]

RQ Discharge ratio [–]745

S Channel sinuosity [–]

t Time [s]

Teq Equilibration time [s]

T̂eq Empirical network equilibration time [s]

U Source term, e.g., uplift or lateral sediment supply [m s−1]750

w Topological width [–]
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wmax Maximum topological width [–]

⟨w⟩ Mean topological width [–]

x Down valley distance [m]

z Valley elevation [m]755
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